Asymptotics of Young Diagrams and Hook Numbers

نویسندگان

  • Amitai Regev
  • Anatoly Vershik
چکیده

Asymptotic calculations are applied to study the degrees of certain sequences of characters of symmetric groups. Starting with a given partition μ, we deduce several skew diagrams which are related to μ. To each such skew diagram there corresponds the product of its hook numbers. By asymptotic methods we obtain some unexpected arithmetic properties between these products. The authors do not know ”finite”, nonasymptotic proofs of these results. The problem appeared in the study of the hook formula for various kinds of Young diagrams. The proofs are based on properties of shifted Schur functions, due to Okounkov and Olshanski. The theory of these functions arose from the asymptotic theory of Vershik and Kerov of the representations of the symmetric groups. ∗ Work partially supported by N.S.F. Grant No.DMS-94-01197. † Partially supported by Grant INTAS 94-3420 and Russian Fund 96-01-00676 the electronic journal of combinatorics 4 no.1 (1997), #R22 2 §

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dyck paths and a bijection for multisets of hook numbers

We give a bijective proof of a conjecture of Regev and Vershik [7] on the equality of two multisets of hook numbers of certain skew-Young diagrams. The bijection proves a result that is stronger and more symmetric than the original conjecture, by means of a construction involving Dyck paths, a particular type of lattice path.

متن کامل

Schubert Calculus on the Arithmetic Grassmannian

Let G be the arithmetic Grassmannian over SpecZ with the natural invariant Kähler metric on G(C). We study the combinatorics of the arithmetic Schubert calculus in the Arakelov Chow ring CH(G). We obtain formulas for the arithmetic Littlewood-Richardson numbers and the Faltings height of G under the Plücker embedding, using ‘rim hook operations’ on Young diagrams. An analysis of the duality inv...

متن کامل

Hook Formulas for Skew Shapes II. Combinatorial Proofs and Enumerative Applications

The Naruse hook-length formula is a recent general formula for the number of standard Young tableaux of skew shapes, given as a positive sum over excited diagrams of products of hook-lengths. In [MPP1] we gave two different q-analogues of Naruse’s formula: for the skew Schur functions, and for counting reverse plane partitions of skew shapes. In this paper we give an elementary proof of Naruse’...

متن کامل

Hook Lengths in a Skew Young Diagram

Regev and Vershik (Electronic J. Combinatorics 4 (1997), #R22) have obtained some properties of the set of hook lengths for certain skew Young diagrams, using asymptotic calculations of character degrees. They also conjectured a stronger form of one of their results. We give a simple inductive proof of this conjecture. Very recently, Regev and Zeilberger (Annals of Combinatorics, to appear) hav...

متن کامل

ASYMPTOTICS OF q-PLANCHEREL MEASURES

In this paper, we are interested in the asymptotic size of the rows and columns of a random Young diagram under a natural deformation of the Plancherel measure coming from Hecke algebras. The first lines of such diagrams are typically of order n, so it does not fit in the context of the work of P. Biane and P. Śniady. Using the theory of polynomial functions on Young diagrams of Kerov and Olsha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 4  شماره 

صفحات  -

تاریخ انتشار 1997